Главная / Устройство пневмоподвески / Исследование пневматической подвески с электронным управлением


Исследование пневматической подвески с электронным управлением

В автомобилях с пневматической подвеской нагрузка на ось распределяется между пневматическими баллонами, наполненными сжатым воздухом. Пневматическая подвеска используется уже более 40 лет и, как показала практика, обеспечивает максимальный комфорт и плавность хода транспортного средства в сравнении с другими видами подвесок.

О свойствах пневмоподвески

Современные пневматические баллоны производятся по той же технологии, что и покрышки для колес – в резине протягиваются армирующие корды, значительно усиливающие конструкцию. В результате срок службы пневматических баллонов является достаточно внушительным и составляет несколько лет при соблюдении монтажных требований.

пневматическая подвеска

Кроме того, пневматическая подвеска обладает некоторыми дополнительными свойствами, позволяющими добиться наиболее комфортного хода транспортного средства. Во-первых, система автоматически регулирует давление воздуха в пневматических баллонах для поддержания заданного клиренса транспортного средства во время движения независимо от его загрузки. Благодаря этому возможный ход подвески не сокращается и остается максимальным независимо от загрузки транспортного средства.

При повышенной загрузке в пневматических баллонах нагнетается повышенное давление, в результате подвеска становится жесткой и обеспечивается устойчивость транспортного средства. При небольшой загрузке транспортного средства давление в пневматических баллонах снижается, подвеска становится мягче, при этом устойчивость транспортного средства остается неизменной.

Поскольку каждое колесо оснащается отдельным пневматическим баллоном, пневмоподвеска является независимой. Автоматическое управление давлением в баллонах осуществляется электронным модулем, специально разработанным для автономного использования на транспортных средствах.

Электронная система непрерывно отслеживает «высоту» подвески и в случае ее уменьшения нагнетает давление в баллонах с помощью компрессора. Компрессор автоматически выключается при достижении нужной высоты кузова автомобиля. В случае если высота подвески выше заданного значения, давление автоматически спускается вентиляционным клапаном до достижения заданных значений. Все компоненты пневматической подвески запитываются 12-вольтовой аккумуляторной батареей транспортного средства.

Общие сведения и история

Пневматическая подвеска, раскрученная компанией Lincoln в 1984 году при рекламе некоторых моделей автомобилей, впервые была представлена в 1909 году компанией Cowey Motor Works of Great Britain. Подвеска не получила признания в те времена, поскольку работала нестабильно из-за постоянных протечек.

Американский автомобиль Stout-Scarab

Рисунок 1. Американский автомобиль Stout-Scarab с пневматической подвеской, выпущенный в 1933 году.

Впервые по-настоящему рабочая пневматическая подвеска была разработана компанией Firestone в 1933 году для экспериментального автомобиля Stout-Scarab (Рисунок 1). Этот автомобиль с задним расположением двигателя был оснащен 4-мя резиновыми пневматическими амортизаторами, установленными вместо стандартных пружин.

Давление воздуха в амортизаторах поддерживалось 4-мя небольшими компрессорами, подключенными к каждому пневматическому баллону. Конструкция стоила немалых денег по тем временам, однако и в наши дни пневматическая подвеска – достаточно дорогое удовольствие.

Расположение элементов подвески

Рисунок 2. Расположение элементов подвески: 1-Правый амортизатор, 2-Компрессор, 3-Левый амортизатор, 4-Задний датчик высоты, 5-Переключатель подвески, 6-Пневматическая линия, 7-Пневматические баллоны, 8-Нижний рычаг подвески, 9-Передний датчик высоты.

В пневматической подвеске кузов транспортного средства поддерживается на колесах пневматическими баллонами вместо пружин, рессор и пр. Разновидности подвески со стальными амортизаторами или торсионными стержнями, наполненными воздухом, не относят к пневматической подвеске.

Существуют комбинированные разновидности подвески транспортных средств, в которых используются как пневмобаллоны, так и металлические пружины. Чаще всего пневмоподвеска устанавливается на заднюю ось автомобиля.

Пневматическая подвеска сложной конструкции

Рисунок 3. Пневматическая подвеска сложной конструкции.

В большинстве случаев главным назначением пневмоподвески является выравнивание транспортного средства. Как правило, пневматическая подвеска является частью пневматической системы автомобиля. Большинство (но не все) транспортных средств с пневмоподвеской также оснащаются воздушными тормозами и другим пневматическим оборудованием. Проблемы с данным оборудованием могут повлиять на работоспособность пневмоподвески.

Важно понимать, что при разработке пневматических систем автомобиля производитель обязан придерживаться установленных регулирующих норм для предотвращения отказа оборудования.

Особенно это касается тормозной системы – ее работоспособность должна быть приоритетной в общей пневмосистеме автомобиля.

Компоненты пневматической подвески

Пневматическая система состоит из 3-х основных элементов – источника сжатого воздуха, пневматических баллонов и клапанов (см. рисунок 4). Существует огромное множество разновидностей данных компонентов и методов их применения. В данном обзоре мы рассмотрим только несколько различных реализаций.

Элементы пневматической системы и пневматический баллон

Рисунок 4. Элементы пневматической системы и пневматический баллон.

Пневматический баллон

Пневматический баллон представляет собой резиновый цилиндр (воздушную подушку), наполненный сжатым воздухом (Рисунок 4). Пластиковый шток на нижнем рычаге двигается вверх и вниз вместе с рычагом. В результате сопротивление сжатого воздуха в баллоне амортизирует колебания рычага.

При изменении загруженности транспортного средства клапан в верхней части пневмобаллона открывается для нагнетания или травления давления. К клапану подключена пневмолиния, по которой подается сжатый воздух, нагнетаемый компрессором для поддержания заданного давления.

Работа пневматического баллона

Рисунок 5. Работа пневматического баллона.

Пневматические амортизаторы

Пневматические амортизаторы оснащены резиновым чехлом, одетым на амортизатор (Рисунок 6). Благодаря данному конструктивному решению формируется герметичная воздушная камера, заполненная сжатым воздухом. Сжатый воздух повышает грузоподъемность транспортного средства без его просадки.

Пневматический амортизатор

Рисунок 6. Пневматический амортизатор.

Некоторые пневматические амортизаторы заполняются сжатым воздухом через специальные клапаны на сервисных станциях. После перевозки груза давление стравливается для обеспечения нормального клиренса.

Схема пневматической системы

Рисунок 7. Схема пневматической системы.

Преимущества пневматической подвески

  • Обеспечивает постоянство клиренса при любой загруженности транспортного средства;
  • Возможность регулировки жесткости подвески;
  • Постоянная частота собственных колебаний, соответственно лучшая управляемость при любой загрузке транспортного средства;
  • Снижается утомляемость водителя и пассажиров.

Области применения пневматической подвески

  • Хот-роды, грузовые и легковые автомобили, мотоциклы;
  • Люксовые транспортные средства;
  • Подъемные механизмы в грузовых транспортных средствах (Рисунок 8);
  • Автобусы с электронно-регулируемой подвеской (низкопольные, наклоняющиеся автобусы).
Подъемный механизм с пневмобаллонами

Рисунок 8. Подъемный механизм с пневмобаллонами.

Пневматическая подвеска с электронным управлением

При установке пневмоподвески с электронным управлением стандартные пружины на всех колесах заменяются пневматическими баллонами (Рисунок 9). Электронная система контролирует коэффициент сжатия в баллонах и автоматически регулирует клиренс и уровень транспортного средства относительно дорожного полотна.

На задней оси автомобиля пневматические баллоны монтируются перед осью на нижних рычагах, на передней оси – являются частью амортизационных стоек передних колес. Эти стойки (Рисунок 10) устанавливаются между кузовом автомобиля и поворотным кулаком.

Пневматическая система с пневмобаллонами

Рисунок 9. Пневматическая система с пневмобаллонами, установленными на всех колесах автомобиля.

Электрический компрессор нагнетает давление воздуха в системе (Рисунок 9). Осушитель, закрепленный на компрессоре, удаляет влагу, содержащуюся в воздухе, поскольку вода может повредить систему. Далее воздух попадает в пневмолинии, идущие от компрессора к каждому из пневматических баллонов.

Перед каждым баллоном размещен электромагнитный клапан, который открывается или закрывается для нагнетания или спуска давления в баллоне. Управляет работой компрессора и электромагнитных клапанов модуль управления.

Конструкция пневматической стойки, оснащенной пневмобаллоном

Рисунок 10. Конструкция пневматической стойки, оснащенной пневмобаллоном, электромагнитным клапаном и встроенным датчиком высоты.

В системе используются 3 датчика высоты: в передней части пневматических стоек (Рисунок 10) и в правой задней части пневматического амортизатора (Рисунок 6). При нагрузке на кузов происходит срабатывание датчика, сигнал от которого передается в модуль управления. Модуль управления включает компрессор и открывает электромагнитные клапаны на пневмобаллонах.

В результате в баллонах нагнетается давление, они растягиваются, и кузов поднимается до заданной высоты относительно дорожного полотна. После этого модуль управления выключает компрессор и закрывает электромагнитные клапаны.

После разгрузки транспортного средства клиренс увеличивается, в результате чего высота кузова относительно дорожного полотна превышает заданные значения, а датчики высоты передают соответствующий сигнал в модуль управления.

Модуль управления открывает электромагнитные клапаны для стравливания воздуха, кузов опускается на заданную высоту, после чего модуль управления закрывает электромагнитные клапаны.

Автоматическое управление уровнем

Многие транспортные средства оснащаются системой автоматического или электронного управления уровнем (Рисунок 11). Два задних пневматических амортизатора соединяются через пневматические линии с компрессором. Как минимум в одном из амортизаторов установлен датчик высоты (Рисунки 6 и 11). При нагрузке на заднюю или переднюю часть автомобиля датчики передают в электронный модуль управления сигнал об изменении высоты.

В результате модуль управления включает компрессор для нагнетания давления в пневматических амортизаторах. Если транспортное средство разгружается, модуль управления открывает клапаны для стравливания воздуха в амортизаторах.

Система автоматического выравнивания

Рисунок 11. Система автоматического выравнивания. Датчик высоты в амортизаторе сигнализирует о необходимости включения и выключения компрессора.

Электронный модуль управления

(см. Рисунок 12)

  • Является «мозгом» электронно-регулируемой подвески;
  • Имеет компактное исполнение;
  • Обрабатывает запросы водителя, поступающие с панели управления;
  • Управляет электромагнитными клапанами для обеспечения заданного клиренса;
  • Постоянно отслеживает состояние системы.
Примерная схема и внешний вид электронного блока управления

Рисунок 12. Примерная схема и внешний вид электронного блока управления, внешний вид блока клапанов и датчика высоты.

Блок электромагнитных клапанов

(Рисунок 12, б)

  • Модульная система, минимизирующая количество пневматических трубопроводов;
  • Снижает время отклика до секунд;
  • Меньшее число оборудования снижает вероятность утечек;
  • Минимальные требования по свободному пространству для монтажа.

Датчики высоты

(Рисунок 12, в)

  • Система трех датчиков;
  • Обеспечивают регистрацию клиренса транспортного средства при любой загрузке.

Область применения пневматической подвески с электронным управлением

Благодаря модульной конструкции пневматическая система с электронным управлением используется:

  • В грузовых автомобилях с пневмоэлементами на задней оси, с пневмоэлементами на задней оси и в подъемном устройстве, с пневмоэлементами на задней и передней оси, с пневмоэлементами на задней и передней оси и в подъемном устройстве;
  • В автобусах, оснащенных пневматической подвеской;
  • В прицепах, оснащенных пневмоподвеской;
  • В малотоннажных коммерческих транспортных средствах и легковых автомобилях.

Пневмоподвеска с электронным управлением может дополнительно оснащаться дистанционным пультом управления и имеет следующие преимущества:

  • Обеспечивает параллельность кузова транспортного средства относительно дорожного полотна даже при неравномерной загрузке;
  • Обеспечивает неизменный уровень погрузочной платформы без необходимости ручных регулировок;
  • Обеспечивает работу системы курсовой устойчивости в соответствии с существующими европейскими требованиями. Данная система также может использоваться для оптимального распределения нагрузки на оси транспортного средства;
  • Быстрое увеличение и снижение клиренса;
  • Малый расход воздуха, поскольку короткие динамические нагрузки на пневматические баллоны не влекут за собой запуск компрессора;
  • Совместимость с низкопольными автобусами;
  • Индикация нагрузки;
  • Длительный срок службы;
  • Для установки системы и трубопроводов требуется немного свободного места.

Применение пневматической подвески с электронным управлением в коммерческих транспортных средствах

Поговорим о применениий такой системы в больших коммерческих машинах, таких как автобусы.

Контроль клиренса и выравнивание кузова относительно дорожного полотна

Датчики высоты непрерывно измеряют расстояние между осью и кузовом транспортного средства, передавая полученные значения в электронный модуль управления. При увеличении или уменьшении загрузки транспортного средства изменяется измеренная высота.

Эти изменения регистрируются блоком управления, который с помощью клапанов автоматически поддерживает заданную высоту, что положительно сказывается на ходовых качествах, комфорте и управляемости транспортного средства.

Функция наклона автобуса

После остановки автобуса по команде водителя он может быть приподнят или опущен для удобства посадки/высадки пассажиров (Рисунок 13).

Функция наклона автобуса

Рисунок 13. Современный автобус наклонился на остановке для посадки/высадки пассажиров.

Езда с большим и малым клиренсом

Пневматическая подвеска позволяет водителю увеличивать/уменьшать клиренс в труднопроходимых местах (например, при переезде через железную дорогу), при езде по наклонным дорогам (проездам, въездам на эстакаду и пр.) и при проезде дорожных участков, ограниченных по высоте.

Увеличенный клиренс предотвращает цепляние днищем автомобиля дороги, уменьшенный – цепляние крышей нависающих препятствий. В системе обычно реализуется ограничение высоты, предотвращающее нагнетание избыточного давления в пневматические баллоны при увеличении клиренса.

Езда с малым и большим клиренсом

Рисунок 14. Езда с малым и большим клиренсом.

Блокирование дверей и коробки передач

Нормы безопасности для пассажиров требуют, чтобы перед снижением клиренса транспортного средства при парковке был активирован парковочный тормоз, двери были закрыты и была включена нейтральная передача.

Простая диагностика

Существует две дружественные пользователю разновидности диагностики:

  • Стандартные блинк-коды;
  • Диагностика с помощью ПК.

Применение в грузовых автомобилях

Пневматическая подвеска в крупных грузовых автомобилях выполняет две важные задачи: поднимает и опускает шасси для сцепки с прицепом и помогает стабилизировать на дороге транспортные средства с высоким центром тяжести.

Крупнейшие производители грузовиков, например, Ashok Leyland и пр., разработали электронно-управляемую пневмоподвеску для своих большегрузных автомобилей следующего поколения, полностью отвечающую всем установленным требованиям (1360 требований). Кроме того, устанавливаемые системы должны обеспечивать комфорт и безопасность водителей 40-тонных грузовых автомобилей.

Компоненты электронно-управляемой пневмоподвески в большегрузных транспортных средствах

Рисунок 15. Компоненты электронно-управляемой пневмоподвески в большегрузных транспортных средствах.

Преимущества электронно-управляемой пневматической подвески:

  • Лучший ход и управляемость транспортного средства;
  • Снижение вибрации и износа трансмиссии;
  • Легкая посадка/высадка пассажиров;
  • Возможность проезда транспортного средства в ранее недоступные зоны;
  • Сниженное потребление воздуха;
  • Выравнивание кузова транспортного средства даже при неравномерной загрузке;
  • Высокая адаптированность транспортного средства к изменчивым дорожным условиям.

Подвеска в низкопольных автобусах

Городской автобус

Рисунок 16. Городской автобус – габаритные размеры, внешний вид, конструкция ступенек.

Рама автобуса

Рисунок 17. Рама автобуса.

Передняя и задняя подвеска

Рисунок 18. Передняя и задняя подвеска. Перед — пружинная подвеска с каучуковым окончанием. Задняя ось — пневматическая подвеска.

Технические характеристики подвески

Номер Описание Значение
1 Нагрузка на переднюю ось, кг 5460
2 Нагрузка на заднюю ось, кг 10200
3 Жесткость передних рессор, кг/мм 34.7
4 Жесткость задних пневмобаллонов, кг/мм 15.42
5 Собственная частота качания передней подвески, Гц 1.7
6 Собственная частота качания задней подвески, Гц 1.3
7 Боковая жесткость передней подвески (рессора), Нм/гр 1960
8 Боковая жесткость задней пневмоподвески, Нм/гр 7415.6
9 Боковая жесткость заднего стабилизатора подвески, Нм/гр 5554.7
10 Боковая жесткость задней подвески, Нм/гр 12970.3

Передняя подвеска

Передняя подвеска

Рисунок 19. Передняя подвеска.

Задняя подвеска

Задняя подвеска

Рисунок 20. Задняя подвеска.

Задняя пневмоподвеска – кинематический анализ

Кинематический анализ

Рисунок 21. Кинематический анализ.

Вертикальная нагрузка

Рисунок 22. Вертикальная нагрузка.

Нагрузка при торможении и в поворотах

Рисунок 23. Нагрузка при торможении и в поворотах.

График жесткости задней подвески

Рисунок 24. График жесткости задней подвески.

Конечный элементный анализ кронштейнов задней подвески

Рисунок 25. Конечный элементный анализ кронштейнов задней подвески.

Задняя подвеска – анализ осевых кронштейнов

Рисунок 26. Задняя подвеска – анализ осевых кронштейнов.

Стендовые испытания

Рисунок 27. Стендовые испытания.

Стендовые испытания пневматической подвески проводились для следующих случаев:

  1. Вертикальная нагрузка 0.5g-2g – 100 тыс. циклов;
  2. Вертикальная нагрузка 1g и нагрузка при торможении 0.8g – 100 тыс.циклов;
  3. Вертикальная нагрузка 0.6g и нагрузка при повороте 0.6g – 100 тыс.циклов.

Заключение

В результате испытаний, проведенных в лабораторных условиях, были подтверждены преимущества электронно-управляемой пневматической подвески над другими стандартными типами подвесок:

  • в данном типе подвески реализована возможность регулировки клиренса в зависимости от дорожных условий;
  • пневматическая подвеска значительно повышает комфорт транспортного средства и позволяет увеличивать клиренс на труднопроходимых участках дорог и снижать его при движении по скоростному шоссе;
  • функция «наклона» облегчает посадку в транспортное средство пожилых пассажиров и людей с ограниченными возможностями;
  • улучшается ход, стабильность и управляемость транспортного средства;
  • снижаются вибрации и уменьшается износ трансмиссии ;
  • появляется возможность проезда транспортного средства по ранее недоступным участкам дорог;
  • электронно-управляемая система отличается сниженным потреблением воздуха;
  • обеспечивается выравнивание транспортного средства даже при неравномерной загрузке;
  • транспортное средство становится более адаптированным к изменяющимся дорожным условиям.

Поделиться:



2015-2017 © Pnevmo-Podveska.com. Все права защищены. Любое копирование материалов сайта разрешено только при условии публикации активной ссылки на первоисточник.